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SUMMARY

A second-order shock-expansion method

David H. Dennis

applicable to bodies of revolu-
tion nesr zero lift is developed. Expressions defining the pressures on
noninclined bodies are derived by the use of characteristics theory in
combination with properties of the flow predicted by the generalized
shock-expansionmethod. This result is extended to ticlfied bodies to
obtain expressions for the normal-force and pitching-moment derivativesA
at zero angle of attack. The method is intended for application under
conditions between the ranges of applicability of the second-order poten- -

.* tisl theory and the generalized shock-expansion method - namely, whefi”the
ratio of free-stream Mach number to nose fineness ratio is in the neighbor-
hood of 1.

For noninclined bodies,
second-order shock-expansion
results and with predictions
normal-force derivatives end
emglq of attack predicted by

the pressure distributions predicted by the
method ere eompsred with existing ~-erimen@l
of other theories. For inclined bodies, the-- ‘“ -
locations of the center of pressure titzero
the methcd sre conumred with experimental

results for Mach-numbers from 3.00 to 6.28. Fi;eness ratio ?, ~, and 3 :

cones and tangent ogives were tested alone and with cylindrical.sfterbodiei –
up to 10 dismeters long. In general.,the predictions of the present meth-6d
sre found to be in good agreement with the experimental results. For non-
inclined bodies, pressure distributions predicted @th the method sxe in
good sgreement with existing experimental results and with distributions
obtained with the method of characteristics. For inclined bodies, the
normal-force derivatives per radian (for normal-force coefficients refer-

—

enced to body base srea) are predicted tithin &O.2 and the locations of
the center of pressure are predicted within *0.2 body diameters. On the
basis of these results, the second-order shock-expansion method appears
applicable for vslues of the ratio of free-stream Mach number to nose

J..-,

fineness ratio from 0.4 to 2.
—-

INTRODUCTION
*

The flow about bodies traveling at high supersonic spe~s was inves-
M tigated by Eggers (ref. 1). He found that under specified conditions such
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flows could be considered as locally two-dimen”sionalemd that they could
be treated by a generalized shock-expansionmethod. The application of
this method to nonliftq bodies of revolution had b6eng+ve@ PreVioWIY. ..
(ref. 2), and subsequently the method was applied to lifting bodies in
references 3 and 4. It was found that the generalized shock-expansion
method accurately predicted the flow about pointed bcdies af”revolution
when the :hypersonicsimilarity parameter (ratio of Mach number to body
fineness ,ratio)was greater than about 1. This method is,-therefore,
particularly usefi.d.in the treatment of flows about bcdies @aveling at
relatively large Mach numbers. At lower speeds, the second-order potential -
theory of”Van Dyke (ref. 5) has been widely used. “(See,also, his hybrhl ‘--
theory for”slightly inclined bodies, re*6,) The ap@ication of’this
theory to-bodies traveling at large Mach numbers is often “limited,howe;er; “–~
by the restriction that the maximum slope of the boflymust be samewbat Iese _~T
than the slope of a free-stream Mach line.

The :rangesof .applicabilityof the generalized shock-expansionmeth~
and the second-order potential theory do not-~ways overlap, and there
remain, therefore, floti at certain combinations of Mach number and bdy
shape which cannot be treated by either theory. Normally,”these interme-
diate flows are encountered “whenthe h~ersonic similarity paremeter based
on nose fineness ratio is in the neighborhood of 1. Since this is a rsnge
of practical interesty additional theoretical methods are needed.

Some-=f this need has been fulf~ed recentlyby the h~ersonic smQl-
disturbance theory (refs. 7 and 8). wits present state cx.d&eloprnent;
however, this theory has application only to limited clakses of nonincllned
bodies of revolution. For example, due to the series fo?.mused to repre-
sent the pressure distribution, it cannot be applied to the nose-cylinder
combinations ccmmonly employed for missile bodies. In large part, then,”” ,
the need for a theory applicable at values of the hypersonic simllariQ’
parameter near 1 still remains.

The present report develops a theory intended to fulfill.this need.
This theory is a second-order shock-expansionmeth~. It I.edeveloped
by an iteration procedure which employs the generalized method of refer-
ences 1 through 4 as the first approximation. Ibcpressionsare derived
which def~ne the pressures on noninclined bodies of revolution. Expres-
sions are also obtained for the normal-force and pitching-mm”ent deriva-”
tives at ziiroangle of attack. Predictions of the”rneth&ji&e c&m&&red ‘~””
with thosc[-o~other theories and with experimental results.
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a

function defined by equation

characteristic coordinates

(6)

normal-force coefficient
normal force

qoAB —

pitching-moment coefficient,
moment about body vertex

qo%d

P-PO
pressure coefficient, —

%

body dismeter .

entropy

fineness ratio
(Fineness ratio of the nose section is fn.)

.—

total pressure —-

body length

Mach number —

static pressure

dynsmic pressure

rectangular coordinates (streamline direction and normal to
streamline direction, respectively)

cylindrical coordinates (x measured from vertex of body and
q from tidward meridi=)

center-of-pressureposition (measured from body”vertex)

angle of attack

function definedby equation,

ratio of specific heats (1.400 for air)

flow deflection angle

function defined

loading (defined

function defined

by equation (9)

byeq. (14))

by equation (5)
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Mach sz@e (arc sine lfi)

Prandtl-Meyer expansion single

shock-wave angle —.

~.:-f~ctiondefined by equation (13)

‘~atio of cross-sectional ar+a of streamtube to that at M . 1
(seeeq. (7))

Subscripts

free-stream conditions

conditions evaluated

“afterbody

.-quantities-evaluated

quantities evaluated
method

qusmtities evaluated

q~tfties evaluated

qusmtities evaluated

quantities evaluated

In the present develogzuent
attention will be restricted to

at various points in flow field

for cone tangent to the body

by generalized shock-expansionmethod

at vertex of bdy

along downst~eam face of shbck tive.
— .

for.cones tangent to body-vertex

for cones tangent to body at Btation x

THEORY

of a second-6rder shock-~p&i~lorime~hod;-”’
bodies of revolution. It Is recognized,

however, that the procedure used herein may, in the future, find applica-
tion to other -t&”ee-dimensionalshapes.

The present method is a refinement of the generalized shock-exp&ion ““
method of references 1 through 4. On the surface of a body o? revolution,
iwediately behind a corner, the generalized methcd represents a first-
order solution for the flow and the present method gives the second-order
solution (see Appendix A). Before proceeding, therefore, it is weU to
orient the p=sent analysis with a review of the approximations involved “
in the treatmenboi? the flow about bodies of revolutjo~ ~~h t:he.g~ez- =.....
alized method. These approximations may be listed as follows (see, e.g,
ref. 4): (1) Disturbances incident on an oblique shockwave are lsmgely
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absorbed therein, and hence, reflected disturbances are negligible; (2)
the flow appears locally two-dimensional; (3) surface streamlines may be
taken as meridian lines. In the intermediate range of supersonic s~eeds
of interest here, the first approximation is particularly well justified
(see, ref. 9), tid it will.not be considered further. As a consequence
of the second approximation, a solution given by the generalized method
satisfies the continuity equation only approximately.1 Although the con-
tinuity equation does not appear explicitly in the following analysis, it
is this approximation that is refined by the present method. The third
approximation is one for bodies of revolution only when they are inclined.
In the present investigation, only baiies near zero lift will be consid-
ered. Under this restriction to infinitesimal angles of attack, sn anal.-
ySiS kU3Sshown
has negligible
therefore, the

that the”deviation of true stresml~nes from meri~i~ lines
effect on surface pressures. In the followigg development,
use of meridian lines as streamlines will be retained.

-.

Nonlifting Bodies -.
—

The generalized shock-e~ansion method was developed for nonlifting
bodies of’revolution from the method of characteristics (ref. 2). This
development may be summerized with the aid of the equation for the stream-
wise pressure gradient.2 .——

(1)

In the generalized methd the pressure is considered constant Qong first-
fsmily Mach lines (refs. 1 and 4). As a consequence, the right-hand
member of equation (1) is approxiwted by zero, and the equation csn be
integrated to yield the well-known Prsmdtl-Meyer relation. The objective
of the present anslysis is to refine this approximation to the right-hand
member of equation (l). To this end, consider the flow about a body of
revolution which has a pointed nose and over which the flow is everywhere
supersonic. The problem wilJ be simplified by approximating the-profile .

lb the treatment of two-dimensional.flows, the first approximation is
used but continuity is-exactly satisfied.

2~s eqwtion cm be derived directly from the cOnt~uitYy moment~>

energy, and state equations with the aid of characteristics theory (see,
e.g., refs. 2and9). In this form, the equation applies equally well
for rotational.and irrotational flows, requiring only that

. ~/dn be zero.
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of the body witl-a-series of tangents to”the .ori&nal c~tom” (s“ee“” ‘- ‘“” ._
sketch (“am. It might be noted that Ferrari (ref. 10) su&e&ted a similar
scheme with a body whose profile was made up of chord lines joining points

. -.

Tangent body
r

/

Sketch (a) -e -.

on the Original contour. While either approximation is permissible, the
—

tangent body was selected here so that the conical flow &t”the vertex
--

.-
will be correct regardless @ the-degree of approximation used downstream
of the vertex.

The...generalizedmethod gives the exact change in stiace pressure
around the corhers of the tangent-body but predicts nd change along the

-.J

straight-line elements. The present problem reduces to the determination
—

of the press-irrevariation along the straight-line elements (see sketch (b)).

---

Streamline

L —.

Sketch (b)
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For simplification, the derivative, a~/aCl, will be approximated with a-
difference equation; thus, along the straight-line element, equation .(1) __
may be mitten (since a5/as = o)

a3 fM
Ap=

s lCOS p
(2)

where Ap is the net change in pressure slong Mach lines emanating from
the surface and AC= is the corresponding length. This eqUatiOn till be_
solved by an iteration procedure based on the solution given by the gen-
eralized method. As previously noted, with the generalized methd the .—

flow is considered two-dimensional.and, consequently, no pressure change
is predicted along streamlines between the expansion fans at either end
of the straight section. tihilethis appr~imaticn maybe appreciably in
error for the surface streamline, it is apparent that the real flow will
appear more nearly two-dimensional at large distances from the body axis.
It is reasoned, therefore, that a streamline, well removed from the axis
(line AB in sketch (b)), can be found along which the pressure till also J
be constant to the accuracy required here.= For alJ Mach lines (such as
CD) emanating from the straight surface then, the pressures at the points
of intersection with this streamline will be equal. The term, Ap, in
equation (2) therefore can be written as kl - p, where kl is a.constant
and, of course, p is the vax@ng stiace pressure. The generalized
method also prescribes that the length (from the surface to stresml~e ADB) -
and inclinations of all Mach lines will not change when the surface is
straight. The term, ACICOS W, therefore can be represented by a second
constant, l/k2. Equation (2) thus may be written

which can be integrated to yield .- ----

-k2sp=kl+~e (3)

where @ is the constant of integration. This analysis serves to
establish the form of the equation representing the pressure distribution
on an element of the ~ent body.4 It remains now to ev~uate the twee

—

unknown constants in eqtition (31. Three known conditions can be employed
examination of characteristic solutions for the flow about cone-

cylinders indicates that the pressure v=iation along streamlines, a rn@er-
ate distance from the surface, is markedly less than that along the surface.

41t might be noted that Ehret, Rossow, end Stevens (ref. 11) found
that pressures on ogives correlated according to the hypersonic similarity
law could be represented approximately by an exponential function of

P distsnce.
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for this purpose. First the pressure, just dowstream of.the corner, p2,
can be calculated exactly from the FYsndt-l-Meyerequations if the pres-
sure, p~Ljand the Mach number, Ml, upstream of the corner are known.

.

Second, the pressure grsdient just downstream of the cm.er may be cal-
culated”from the results given in Appendix B. The expregaion defining
this gradient is

where ----
~ti

A=- ,.
sin q

B = ‘M=
2(M2 - 1)

and O is the one-dimensional 6xea ratio or

7+1

[1()
2(7-1)

l+~M2

7+1

2

(4)

—.

-.

(6) ‘“”

—.. ....M-

—

—

(7)

For the”third condition, it is app~ent that the pressure on the element ““
-—

shown in sketch (b) would a~roach scme Limiting value tf, rather thsn
ending &Lt point 3, the element were extended as indicated by the dashed
line. If the element were considered to be infinitely long, so as to
form an extended conical surface, then the only effect the region ahesil
of point 2 will have on the flow at infinity is to form an infinitesimally
thin la~er near the surface across which the entropy varies. It can be
demonstrated, however,that there is no pressure change through this layer
snd that the flow outside the layer is conical. Consequently, the limiting
pressure is simply, PC, the pressure on a cone tangent to the original
body at the same
traveling at the
tions, the three
obtained,

poin~ as the element shown in sketch (b) (ad: of course,
sane free-stream Mach nu@er). With these three condi-
unknowusin equation (3) may be evaluated and there Is ..=—

P= Pc - (Pc -.p2)e-v (8) .

.



.

.

NACA TN 3527

where

It is appsrent
(and Mach number)on

9

()* x- X2
n=

as 2 (Pc - -P2)COS52
“(9)

.—

that, in order to apply equation (8), the pressure
the surface of noninclined cones must be lmown. These “-

“quantitiesmay be determined from the results of reference 2 or reference
12. For convenience, the curves shown in figure 1 have been plotted from
the results of reference 12.

By application of equation (8) on successive elements, the pressure
distribution on the tsngent body can be determined. In particular, the
pressure at each of the points of tangency may be calculated and applied
to the original body. The procedwe is.as follows: First, the elements
of the tangent bcdy are selected and the coordinates (x,r) of each corner
determined. The first element is tangent to the body at the +ertex, and ‘“
the flow over this element is thus conical. For the first corner, then,
the pressure, PI, and the Mach number, Ml (see, sketch (b)), are the same
as at the vertex of the original body. The pressure, P2, and the Mach
number, M2, may then be determined with the Prandtl-Meyer equations. The
pressure gradient, (ap/as) , may be determined from equation (4) since,
for the “firstcorner, (ap/%)l is zero. The tsmgent-cone presstie, pc,
may be obtained from reference X2 or figure 1. With the various factors
in equation (8) thus evaluated, the pressure at the tangent point ad at
point 3 (see sketch (b)) csn be calculated. In like manner, the pressure
gradient at point 3 can be determined by differentiation of equation (8),
or

($?).=(-) (292 (lo)

With the pressure and pressure gradient at point 3 known (the Mach number
may also be calculated from the pressure in the usual.manner), the factors
in equation (8) may be determined for the next element. This process is,
of course-,repeated for each element of the tangent body.

The procedure just described is got difficult to apply; however, fur-
ther simplification can be obtained by the use of a “two-step” tangent
body. This bmiy consists of a cone tangent to the original body at the
vertex smd a conical surface tsmgent to the body at the station where the
pressure is to be calculated. With this two-step body, the second surface ‘-
is a vsriable depending on the station in question on the original body.
For this approximation, equation (8) becomes

p ‘Pc - (Pc ‘?)s)e-Bw .. ..... (u) ‘-
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where

xsin~-r costi”
P ‘rcos5-xsin5

(
sin 8‘)*= ‘s !&—

(Pc - P~) sin ~ /

m ..

-.
;= . . . .: ---- -,-—. ---- ----- —

(12)_

[13)

—
The subscript, s, denotes quantities at the.station on the body as evsl-
uated by ‘;hegeneralized shock-expansionmethod. With equation (lJ_)it
is possible to obtain, very rapidly, a firstmpproximation to the pressure

-.

distribut~.on.

The f;econd-ordershock-expansionmethml has been developed to predict
.-

the pressures on a noninclined body of%evolution. In the “followingrsec-
—

tion this.method wilJ.be extended to lifting bodies. 11-
—

Lifting Bodies
.*._.....-.

For inclined bodies of revolution, a second-order shock-e~anslon
methmi would involve not only a revised expression for the pressues, but,
in additicm, a retised approximation to the shape of the.surface stream-
lines. It is recalled from the results of Eggers (ref. 1) that, acco@i~
to the gez%r’alizedmethcd, surface streamlines may “beappr@mated by
goedesicsi T’orbodies”bf revolution, Savin (ref. 3) not@_t~k. the per-
tinent gecdesics “ae stiply meridian lines. While tlxlkresult is exact
for nonincl”inedbodies -ofrevolution, it is only an appro&mation in the
case of inclined bodies. A refined appraimation corresponding tO a.
second-order method undoubtedly could be obtained by graphical integrati&
of the moti.entumequations employing the Pressure distrf~ut.ion.g$ven .!?Yt&
generalized method. However”,it seems at present that-this procedure would
involve extensive calculations. If attention is restricted to balies new
a = O, it–can be demonstrated that the deviation of the true streamlines
from the meridian lines will not influence surface pressures. The apprw-
imation of...meridisnlines as streamlines csm, in effect> be retained and
relatively simple expressions can be obtained, therefore, for the initial
slopes of -thenormal-force and pitching-moment curves. To this end, the
expressionfl~orthe normal-force derivative can be written5

(14)

5The subscript, a = 0, has been omitted for simplicity of notatfon.
.

.....

—

-.. .=

.

.
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where A is the nondimensional loading on a thin disk normal to the body
axis and having unit radius. This ltitig A is given by the equation.--..

(15)

The problem then is to evaluate d(p/po)/@ The development given pre-
viously which led to equation (3) also applies to bodies at infinitesimal
szuzlesof attack. Eauation (8) also applies; however, the variables in
th~s equation must b= considered
differentiation of equation (8),

as dependent on @e of attack. By
there is obtained

d(dpo) . (1- e-n] ‘(Pc$o) +e-qk$o) -q dv
&t + (Pc - p2)e ~ (16)

This equation must satisfy the condition
d(p/po) =d(p=/Po) at ~ = ~

(i.e., x = x2). By the application of this %ndition t~equation (16),
the last term (involving dv/da) is eliminated.e The term, d(p2/po)/da
may be evaluated with the aid of the Prsndtl-Meyer equation

d(pZ/po)

[

b d(pl/po) p= 1 d(H1)1
p21@(H=)

=—
da Al da ‘— ‘ZZT‘ZH1 dU

Ferri (ref. 13) has shown that the entropy (and hence the totsJ-

(17).

.-

pressure, —

H) on the surface of an inclined cone is constant (independent of cp).
When equations (15), (16), ad (17) sre combined, then, the ihte”gralsOf.
the terms involving dH=/da end d&/da will be zero (since Jficos cpdq=O).
Equation (15) may therefore be written -o

1COSqyd(p (18)

The only terms in equation (18) that are functions of Q are d(pc/Po)/da
and d(p;/Po)/du. ~ese two-te&s may be evaluated in t“ermsof the normal-

dcw !
force derivative of the tangent cone, ~ It., and in terms of Al. After
performance of the necessary manipulations, there is obtained

e~is res~t indicates that the lifting pressures &t sti @es of
. attack vary in a manner analogous to that of the pressures at a = O.
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cones are available from
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(19)

equation (19) that dCfq/da for cones must be
A cam be evaluated. Fortunately, results for
reference 14 and have been plotted for convenience

in figure 2. The lodEtng, A, may thus be c~cfited in t~ s~e msnner
as the zeio-lift pressures. In this case, AL, for the first corner ie

dCN -.
simply (tan 5V) —

-...

~ tcv”

As before, a first approxiinationto A cti be obtained “withthe
two-step body. This approximation gives

(20)

In Appendix C, it is shown that equation (20) leads to very simple results
for certain conuhonbddy shapes. —.

With the loading, A, ?mown, the normal-force derivative may be eval-
uated by integration of equation (14). In like msnner, the pitching-
moment derivative can be determined from the equation7

(Zi).

A second-order shock-expansionmethod for bodies of revolution has
been developed to predict the pressure distribution and the normal-force
and pitching-rnanentderivatives at a =.0. The results are relatively
simple in form and may be applied to a given body with only a moderate
amount of computations required. Simplified expressions ba&ed on an addi-
tional approximation have also been presented which further reduce “the _
amount of work re@ired. It-should be noted, however, ~hat””open-nosed
bodies and pointed bodies which produce shock waves other than t“heone at
the vertex r=quire special forms of the meth6d.s The necessary equations

7~e (contributionto the pitching moment o~the variation illlocal
sxial forces with angle of attack is smell for.slender bodies (see
ref. 15) aid will be neglected throughout the present analysis.

aIt mmy also be noted that b.oattailedbodies present a special.problem
dCN

since neither pc nor -G t= is defined in this cas,e. In practice, how-

ever, it has been found by comparison with results given in.reference 16
dCN

that the uijeof Pc =posndx
I

= 2 gives reasonable results for

bodies having moderate amounts oftb%attail.

.
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for these cases sxe contained in Appendix B. In addition, there are
several restrictions on the present method which should be mentioned.
First, it is apparent that if the exponential variation of the pressures
is to be valid, then the pressure gradient just downstream of the corner
bust have the same sign as the pressure difference, PC - .p2. This condi-
tion is given by q ~ O in the general case and by ~> O for the simpli-
fied methti. There is an additional restriction on the simplified method,
and that is that the two-step bodies must be real bodies, (i.e., the
intersection of the two tangent lines must not OCCUr at negative v~ues .=
of x or r). This condition is given by P >0. When q = O or P$ = O,
all equations reduce to those given by the generalized shock-expansion
method.

It remains, of course, to determine the accuracy of the second-order
shock-expansionmethod and to define its range of applicability. There
are sufficient data available, both from experiment and from character-
istic solutions, with which the predictions of the method for zero-lift
pressure distributions can be compared. However, for the case of lifting
bdies, sufficient data are not available, and for this reason, the exper-
iments next discussed were conducted. --

EmmIMmT

An experimental program was conducted to deter@nethe $nitial slopes
of the normal-force curves and the centers of pressure for a series of
nose-cylinder combinations. The tests were designed, of course, to permit
a check on the accuracy of the predictions of the second-order shock- “
expansion method just developed. It is recalled that the methcd is
intended for application at values of the hypersonic similarity parameter,
W/f. in the neighborhood of 1. The tests cover a range of Mo/fn from
o~43–t0 2.09.

The tests
tunnel at Mach
descriptim of
reference 17.

Apparatus and Tests .—

were conducted in the Ames 10- by 14-inch supersonic wind . _
numbers of 3.oo, 4.24, 5.05 and 6.28. For a detailed
this wind tunnel and its aerodynamic characteristics, see
Normal forces smd pitching moments for the test models

were measured with a strain-gage balxmce. The balance consisted of a mdel
support ~ting on which the moments were measured at four points. From
these four measurements, the normal forces and centers of pressure were
determined and checked. Measurements were made at nine angles of attack
from -@ to +4° at each test Mach number. At each angle of attack, the
values of ~/d and CN/cL were calculated. These values were plotted as
a function of angle of attack, and the intercepts at.
ing curves gave the values of

a = O of the result-
dCN/da and ~/d at m = O.



Wind-tunnel calibration data (see, ref. 17) were employed in CW- __
bination with stagnation-pressuremeasurerneatstQ obtain the.stream
dynamic pressures. Reynolds numbers based o?ithe maximum diameter of the
models were

Mach number Remolds “ntiber,”-
million

3.00 0.79
4.24 .72
5.05

● 35
6.28 .15

Mcdels

Cones and circular-arc tangent ogives of fineness ratios 7, 5, and
3 were tested alone and with cylindrical afterbodies having leng&hs ofl
2, 4, 6, and 10 diameters. The models were made of polished steel and–
each had a base diameter of 1 inch.

-.

Accuracy of Test Results

Strs~Mach numbers in the region of the test bodies did not vary
more thaZ”fO.03 from the mean values at Mach numbers-up to 5.05. A maxi-
mum variation of *0.05 existed at-the highest test Mach number of 6.28...

The-accuracy of the test results is influenced by uncertainties in
the measm?emen”tofmoments and in the determination of the”stresm dynsajic
pressure @d angle of attack. These uncertainties resulted in estimated
maximum errors in the normal-force derivatives and centers of measure as
shown im~the following table:

It should be noted that, for the most
presented herein are in error by less

part, the experimental
than these estimates.

results

.
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REFJILTSAND DISCUSSION

~onlifting Bodies

The second-order shock-expasion methal has been developed primarily
to treat flows characterized by values of MO/fn near unity. Accordingly,
the method has been employed to obtain the.zero-lift pressure distribu-
tions at &/fn = 1 for several different body shapes.g The results are
shown in figure 3 along with distributions obtained .yiththe generalized
shock-expansion method (ref. 2). Distributions obtained with the method ‘“
of characteristics (refs. 11, 18, and 19), which are considered to be
exact, are also shown. It is apparent in fi~e 3 that the present melh~ . ..
provides an improvement over the generalized method. The differences in
the distributions obtained with the present method and those obtained _
with the methcd of characteristics are almost indiscernible.

In figure 3(c), comparison is also made.with the predictions of the
hypersonic small-disturbance theory (ref. 8). The curve shown was calc-
ulated by three terms of a power series representation of the pressure ‘- _
distribution. As noted in reference 8, additional terms will be required
before this method wild.accurately predict the pressures on an ogive.

.—

Even when the additional terms are obtained, however, it seems unlikely
that the small-disturbance theory will provide a more accurate estimate
of the pressures th@n provided by the present method for the case shown.
The small-disturbance theory does have a certain advantage in simplicity
for, if the coefficients of the series expansion are ~0~~ the.PrSssure
distribution can be calculated very easily. This advantage is psrtially
offset by the restriction that the series method requires the body prbfile
to have continuous derivativesup to the same order as the number of terms
used in the series. With this restriction, the theory csmnot be applied
beyond the nose-cylinder juncture of the body (fig. 3(c)). —

To investigate the accuracy of the present method at v~ues of ~/fn
other than 1, the comparisons shown in fi~e 4 have been ~de. H~re,
the predictions of the present method and those of the generalized method
are compared with experimental results for fineness ratio 3 and 5 tan ent

r ___ogtves at Mach numbers of 3.00, 4.24, s@ 5.05.10 The values of MO fn
rsnge from 0.60 to 1.68. The experimental results-were taken.from refer___
ence 3. For alJ cases shown, the predictions of the present method we .
within the accuracy of the experimental data. It is also apparent that

gIn alJ_applications of the present method tocurved bodies, the
tangent lxxlies=~ployed were formed by elements ta&ent to the-original
bodies at stations X/2n = 0, 0.1, 0.2, . . .> 1.0. The tangent-bdy
approximation is required only if the body profile is curved since for
cone-cylinders, and for the cylindrical section of any nose-cylinder com-
bination, the present method yields results in closed form.

10For some of the cases shown in figure 4, the semiempirical methods
. of reference 20 may be used.

.
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the predictions of the present method tend to”approach those of the gen-
eralized method as

{
M. fn becomes appreciably greater @m 1. At

~/fn =1.68 (fig. h(f ), for example, the predict~ons .oj&two~eth@ ~
differ only slightly.

.,

In.figure”b, comparison is also made with the second-order potential
theory (ref. 5) for conditions where this theory is appli.c&ble(i.e.,
Mo/fn =0.60 and 0.85). It is somewhat surprising that the present meth~
is as accurate as the second-order potential theory even at the relatively
low val~e of ~/fn of 0.60.

The results presented in figures 3 and k indicate that the present
method fulfills its intended purpose-by providing ~ estimate of the
pressures..m.noninclinedbodies of revolution for values of ~/f’n near 1.
At VtiUeS Of ~/fn as low as 0.60 the present method provides resultk “
comparable in accuracy with those obtained with the second-order potentisl
theory. At values of ~/fn approaching 2; the predictions Qf the ~ese”nt -
method and those of the.generq.lizedshock-expansim”method differ only
Slightl;y. It remains now to investigate the applications of the meth6d
to incl:inedbodies. .-

Lifting Bodies- -- -- .—

The experimental results obtained.in the present tests =e given in
tables I and II. Predictions of various theories are also tabulated.
These include the predictions ofihe present method (with vsrious approxi-
mations), the generalized shock-expansi”bnmethod (ref. 3), first-order
potentiml theory (refs. 6 and 21), Vsn Dyke’s hybrid potential theory
(ref. 6), snd Newtonian impact theory (see, e.g., ref. 22).1’ With the
exception of the two potential theories-;sJJ theories have..been..applied
throughout the entire range ofiest v~iables. The potential theories
cannot be employed, of course, if the free-stream Mach angle i= less than
the body semivertex angle.

No:nnal-forcederivative.- The experimentally determined normal-force
deriv=.1.vesand the predictions of the various theories12 for the bodies
tested are shown in figures 5(a) through 5(f). In general, the preeent
method predicts the normal-force derivatives at zero angIe “ofattack ‘“

l%~olutions with the second-order-potentialtheory employed in the
application of the hybrid theory were obtained with the aid of refer-
ence 23, (Additional results obtained with the first-order and hybrid
potential theories-and with Netionisn impact theory may be found in ref-
erence 24.)

—

‘12Curves for the first-order potential theory are not-shown in fi~-
ure 5 s!Lnee,in all except a few cases, the predictions of thie theory
did not”d~ffer significantly”fromthose of the hybrid potential theory
(see tables I and g).

—-
.

—.-.
. .

—.
+..

——,.-

.-

.-

-. —
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essentially within the accuracy of the data (within about
out the entire rs.ngeof test variables. In addition, the
appesrs to provide the most consistently accurate results

17

i-o.2)through-
present method
of all the-““

theories rmesented in fi~e 5. The accuracy of the method at low values.
of Mo/fn can be”explained p&tial.ly by examination of the predictions
of the method for the limiting case of very slender bodies. ~ this
limit, it can be shown Yrom equations (k) and (9) that the term, q,
approaches itiinity. From equation (19), then, the loading, A, maybe
written

A=2t=8=2~ (22)

since Slit = 2 (see, fig. 2). With the substitution of this equation
~ tcx

in equation (14), there is obtained

(23)

This result is, of course, the well-known prediction of slender-body
theory, which is known to be accurate for slender bodies at low supersoriic
speeds. !Ilms,the accuracy of the present methd. at low values of ~/fn
can be attributed, in part, to the fact that it reduces to slender-bmly
theory in the limit.

From the results given in figure 5, several observations can be made
concerning the accuracy of other theories. For example, it might be
expected that the potential theories would be more accurate than the other

.—

theories when the parsmeter 4= tan ~ is appreciably less than 1.
--

For the fn = 7 cone at MO = 3 (fig. 5(a)), however, this parsmeter is
only 0.20, and yet, for the longer sfterbodies, the hybrid potential theory
is appreciably more in error than the present method. As found in ref-
erences 2 through 4, the generalized shock-expansion method gives accurate

.-

results when ~/f is greater than about 1. Caution should be ~ressed
here, however, for the significant parsmeter is truly ~/f and not -
~/fn . The results shown in fi~e 5 indicate that although ~/fn may
be appreciably greater than 1, for cases where the efterbay is suffi-
ciently long to reduce ~/f below 1, the predictions of.the generalized
method may depsrt appreciably from the experimental results. In general,
impact theory gives acceptable results only for nose sections-without
sfterbodies.

Center,of pressure.- The experimentally determined centers of pres-
sure and predictions of the vsrious theories for the bodies tested =e

—

presented in figure 6. The present method predicts the location of the
centers of pressure essentially within the accuracy of the data (within
about *0.2 bcdy dismeters) throughout the entire range of test variables.



.
---

In sdditicm, the present method again provides the most corisistently”
accurate results of all the theories presented.

.-
In general, aid.observa-

tions made Wetiously regarding the reliability with which the various
theories predict the .normal-forcederivatives can also be made in the
case of tke centers of pressure.

m..—

.

. ..—___

RangcIsof applicability.- Severd parameters are usef~ for defining
the rangeE.M applicability of the various theories.
parameters covered by the present tests =-shown in

The ranges of these
the following table:

Parameter Rarige

~ 3.00 to 6.28
3 to 17

f~ 3t07
o to 10

~/f 0.18 to 2.09
MJc 0.43 tO 2.09

F1- t~ b 0.20 to 2.12

The second-order shock-expansionmethod was found to be applicable ._
throughout the ranges of variables shown in the table. Both “d@/d& “Wd .
%/d were :pr&ibtei-witMn *0.2. me Present tests did not reveal the
limits of applicability of the method. It-as indicated, however that
the method may apply to relatively low vsl.tiesof ~/fn (or””~~~ t% ~),
since, in the limit of very slender bodies, the method reduce8 to the
well-lmown’slender-bodytheory. The umer Umit.of.the methcd is dictated
by the condition specified in the development - namely, q > O“(see
eq. (8)). .Calculations have revealed that this condition till be vio”late~~“.

if~~ “;an~ is appreciably greater than 2.5.”
--

.—

--
—

.-

—=—

The present tests also reaffirmed the conclusion given-in references 1
through k,”that the generalized shock-expansionmethod is applicable when
~/f is greater than about 1. At values of ~/f appreciably neater

—

than 1, no”~gnificsmt differences between
ized and second-order methods were”faund.
three two nethods overlap and thus include
of revolution throughout-”thetitermediate---
ranges. .Z--

the tiredictionsof the gene@.- —-.-
The ranges of ap~=cab:lity Of___ I: ..-
most flows about~oir&i_k@d2e& ._~
emd””hlgh-supersonicspeed ““ “-.—.,.-.:. .,:-—= ....-= +___-.

.-
is, of course, limz.tedby the
them 1. Even at the lowest .-

Appli@%ion of the potent&al theories

~condition that ~ 1 tan @ must be less
values of <~=~1 tan ~ covered by the present tests, howeyer, neither
the first-cwder nor the hybrid potential theory wzk found to provide con-

.
.—

sistently accurate predictfotisof dC!N/daor Z/d. The calculations per-
formed SJ.SC)revealed no significant differences in the predictions of the
two theories at vhll.uesof ~tah~v less than about 0.7.

--
,.

.
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Approximations

19 .

of the Rresent Method

As noted in the development of the present method, a simplified solu-
tion for bodies with curved profiles can be obtained by the use of a two-
step tangent body. This approximation has been applied to the ogive-
cylinders of the present tests. By the use of additional approxhnations
to the loading,,A, the simplified solutions for dCN/da and %/d can be
obtained in closed form as discussed in Appendix C. Examples of the
accuracy of the approximate solutions sre shown in figure 7. While the
approximate methods do not yield results so consistently accurate as those
obtained with a more complete solution, the approximate methods may stilJ
be useful to obtain rapid estimates of d~/da snd ~/d. In this connec-
tion, these &ntities can be estimated for ogive-cylinders in a very
few minutes with the aid of the results given in Appendix C.

CONCLUSIONS

A second-order shock-expansion method applicable to bodies of_revolu-
tion near zero lift has been developed. For noninclined bodies, the pres-
sure distributions obtained with the method were compared with existing
experimental results and with the predictions of other theories. For
inclined bodies, the normal-force derivatives and centers of pressure at
zero angle of attack determined with the meth~ were compared with the
predictions of other methods md with experimental results. Cone- and
ogive-cylinders with fineness ratios from 3 to 17 were tested at Mach
numbers from 3.00 to 6.28, corresponding to a range of values of the
hypersonic similarity parameter based on nose fineness ratio (i.e., the
ratio of free-stream Mach number to nose fineness ratio) from 0.43 to
2.09. These comparisons led to the following conclusions:

1. For noninclined bodies, the present method predicts the pressure
distributions within the accuracy of experimental results. At values of
the hypersonic similarity parameter based on nose fineness ratio as low
as 0.6, the present method is as accurate as the second-order potentisll
theory. At values of the parameter approaching 2, the predictions of
the present method differ only slightly from those of the generalized
shock-expansionmethod.

2. For inclined bodies, the normal-force derivatives and the loca-
tions of the center of pressure at zero angle of attaekpredicted with
the present method are in god agreement with the ~er~ental results
tlmoughout the entire range of test variables. Within this ragge, the
present method yields results more consistently accurate than those of
other available theories.

—

—

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics

Moffett Field, Calif., Oct. 12, 1955
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APPENDIX A
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POWXR SERIES REPRESENTATION OF FLOW ABOUT BODY OF REVOLUTION

The accuracy of the present method has been demonstrated by compar-
isons made over a wide range of flow parameters. It is also informative,
however, to examine briefly the mathematical accuracy of the methcd. For
this purpc~se,the model shown in sketch (c) is useful. ltromthe vertex

/-
/

..... -.

,=-.—

Sketch (c)

to point 1; the body is conical. Between points 1 and 2; t“he”s&face- Is

.

.-

deflected by a small angle, ~. At any point downstream ofipoint 1, the
physical deviation of the body from a conical.surface may be given in
terms of the angle, e, and the distsmce, As, measured from point 1. Siml-

--

larly, flow parameters at any petit downstream of point 1 may be expressed
in terms ofi e and As. Before developing such an expression, it should
be noted that for this model (and within the restriction that the flow is
everywhere”supersonic), the present-methcd ~rovides an exact solution for
the surface flow in seve?nillimits. For example, the present””wthod Is ‘-”‘“
exact for all values of As when e=o. For”& =oanaA6+m, the ““
methcd is exact for all values of e. For arbitrary values of & and e,
of course, the present method is not exact. However, the general accuracy
of the method can be demonstrated by expressing flow parameters in the

, form of a ~aylor series in the two independent-variables, e and As. The
dependent vsriable used to define the flow may be any one of several param-
eters. Pressure and velocity are among those most connnonly””used.In the
present analysis, however, the Prandtl-Meyer angle, v, is considered the
dependent ‘vsriable. It should be recognized that the value of the Prandtl-
Meyer angle.at a point will define the Mach number, pressure, velocity,
and other such parameters. We have then the series

.-

—..
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.=v=+(’’&(@+@):+

(Al)

Each of the derivatives is evaluated at A = ~-= O. When e = 0, i.tis
apparent that the flow parameters are constant along the surface and
independent of s. Therefore, all derivatives with respect to s &lone -_.
are zero. When As = O, it is also app=ent that (av~b)l = -1 and that
all higher derivatives with respect to 5 alone are zero. We have then”
the problem of=evaluating the cross derivatives. The second-order cross
derivative, (a v/as ~~), maybe evaluated with the aid of equation (B14),
fromwhich-(&/%)2 ~ybe-

&)= = ~ ~)= =

It is also apparent that

.

determined; namely,
-.

2r=& ($ ‘in 5’- ‘fi :)
(A2) -

(%$= =& (*)2
(A3)

in the limit as 5= + 5=. Hence, by virtue of equation (A2),

()a2v -Cos 5~—.
as m,= [ 1(~ tall t51) -1

‘2r Jip==i
(A4)

As noted in Appendix B, eqmt ion (Bllt)is not an exact solution for the
pressure gradient. It can be demonstrated, however, that eqmtion (A2)
is accurate to the first order in e and hence, equation (Ah) is exact.1

‘In the derivation of equation (B14) a term,

&- 5-lJ ()& ds

2 Cos p2 - w ~
was neglected (see eq. (B1l.)).4 In the present swlys is, both apjacl.
and the interval of integration, (ss - s4)/b (see sketch (d)), are of
order e; hence, the neglected term is of order =2.

.
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With the substitution of equation (Ah) in eqyati.on(Al.),and with the
application of the other results previously noted, there is obtained

The
the

—

Cos al
v = V1 -.e -

[ 1(NmF-=t=l %)-l (Q)(4+%1J-

o[(As)2(e), (b)(~)21 (A5)
....-

gene:r~ized shock-expansionmethod of references 1 through 4 gi~es ___ ,
result that v = VI - e. The generalized methti~””~i~-e~”~~e-j%andtl.‘“

Meyer singlemathematicfiy accurat~ to the first orde~ of the independent
variablelg e and & and, therefore, itiediately downstream of the corner,
gives a :E’irst-ordersolution for the surface flow. The present methcd,
adds the coefficient of the term involving (As)(e) in equation (A5) and,
hence, gives the Prandtl-Meyer angle ~thematically accurate to the eecgnd
order of the independent-variables e and”&. In general, therefore,
immediately downstreainof the corner the present method gives a second-
order soILutionfor the surface flow, emd therefore, it has been termed
the second-order shock-expansionmethod.

The.fcregoing analysis considered only expanding flows about the
corner. If e is positive, then the shock wave emanating from the corner
must be considered. The result obtained is essentially the sane, however.
For posii;ive e a term of O(CS) must be sd.dedto equation (A5) to account
for the difference between the Rankine-Hugoniot equations and the Frandtl-
Meyer equations. Alternately, the term, -e, in equation (A5) C= be

replaced with the change in Prandtl-Meyer angle between points 1 and 2
as given by the Rankine-Hugoniot equations. The second-order term in
either case is identical, however, as equation (A4) may also be obta”tied
by differentiating equation.(B21). (It may alsobe obtained by differenti-
ation of the exact pressure-gradient equation, eq. (B18).)

.—

.“

—

.-.

— :

.—

.
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APPENDIX B

EVACUATION OF PRESSURE GRADIENT DOWNSTREAM OF CORNER OF BODY

OF REVOLUTION

Convex Corner

Along a streamline in axially symmetric
holds (see eq. (l))

flow the following relation

?)p @= 1 ap (-A aa )s5npsin5
—

.—z- as
(Bl)

Cos ~ ~ Cosp ~+ r

FYom this equation, we may also write

(B2)

and

Consider
revolution as

now the flow in
shown in sketch

the region of a convex corner on a bcdy of
(d). Between points 4 -d 5, we may write,

A
Mach lines

Streamllne~

Sketch (d)
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from equation (Bl)

““ ~AcA ~ 3527 ‘ .. ..w_

;

-.

...—

If point~;4 and 5 are near to the surface, equation (B4) may be approxi-.
mated by---:: -

—-. —----.———

r])2 r5
.dpps-p2_pb-pl-(~5 _b4). —

(1)
~ de

-7+ b AI A C:s p ac
“Pl “4

(B5) -.

Since th<:”flowbetween points 1 and 2 is strictly of the Elrandtl-Me~r
type, -

We may also write from equations

.-

.-
.

.—-\—

(B6)

(B2) and’(B3)

‘*[@2 -~@.)Jb ‘B’) ‘“ ‘-

‘cO::’[G)l-h’(=)ja ‘B’)

cm



NACA TN 3527 25

When equations (B6) through (B1O) are substituted into equations (B5),
there is obtained

—
—.

h2 [(*)2-’2r+)2}-2c:”1[@)=-’’t$)}+ .“” - -2 Cos p’

sin ~zsin 5’ sin plain 51

f

5
b- S,=

()
& d;

r r A C:s p ac=
4 (Bll)

If it is assumed that a first approximation tb the flow is given by the
generalized shock-expansion method, then the right-hand member of equa-
tion (Bll) may be neglected. Equation (Bll) may thus be written

692-’432=* [6)‘in““in5:-‘h “’sti5’1+

= (2)(tx2)=-“63=1Cos p~

In the limit as the streamline between points 4 and 5
surface, the ratio, a/b~ may be e~~uated ~ terms of
area ratio

(B12)

approaches the
the one-dimensional

(B13)

. With the substitution of equation (B13) into (B12)Y there iS obtained ~
after combination of terms ...—.—-. ...

.
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(Bl&)

where .=”-. -...‘. -
.,. .

. . . .. .

YpM2

‘=2(F -1)

.,::

(B15)

<

and, of couise

Equation (B14)
pressure gradient.
~d 25. These more
ical integration.

(y+l)

2(7-I)

.-. -- ‘--(B16)

(B17)

represents only an approximate evaluation of the
More exact evaluations maybe found in references 10
exact~esults, of-course, require numerical or graph-

Concave Corner
.-

the tangent bodies used in the application of the
have ccmvex corners. There is a possibility that
be encountered. In the event that the original bcdy
concave corners, equation (Bl~) will stild.suffice

In mcmt cases,
present method will
concave ccwmers may
does not have sharp .- . .
since the flow along the surface is still isentropic. However, if the
original body does have sharp concave corners, then the pressure gradient
for this case will also be required. Thie result c&n be obtained in the

.

same way CA eqpation (B14); however, the shock wave emanating from the
corner must be considered titer the manner described in reference 9. The
expression defining the pressure gradient in this case is

.

. . .

—,,
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7+1
p~%n(u - &Jcos(ll- bJ

a8U=
(B19)

[

sin(cf- @)cos(a - ~) + 4

()

COS2(U- 6J
1-

sin(o - ~)cos(u - 8u) 7 + 1 ~2~@u - ~)1
and 1

,1
[(7 + l)tm(% - GJCOS(U - ~) - Sin(u - %)lMu2sin2(u - %) + SMU - hi)

I

(BQO)

1+[1- 2 sin2(u- 8u) + 2 tEUl(8d - Eu)sin(O - 8u)COS(U - %)lMu2Bfi2(U - %)

,
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In these ISquations,a is the shock-wave angle wit”hrespect &the body
sxis, aniL..(aH&)u is the variation of the total pressure normal to the
surface $ist-upstream of the shock wave. The subscript, U; refers to
conditions upstream of the shock wave, S.ndthe subscript, d, refers to.
conditions downstream. Equation (B18) represents the exact solution in
the usti””s~se. All effects of the interaction between &hock”waveti”and-
Mach waves are therefore included. In order to he ”corisi8tEn%””wfthother”
parts of this analysis, these effects should be neglected. ?n addition,
since equation (B18) is intended for application..to.a.tange.nj.b.@Y}the
body curva’cures,(a5/a8)uand (b@3)d, till be zero. It may dso be
noted that the first step of the tangent body j.sa.coge...tWenttott@t@ ..__
vertex of the original body. For this approximation then, there till be
a small layer nesr the surface of the tangent body for which”(bH/bn) = O.
With these approximations applied to equati~ (B18), a simplified result
csm be ob-~ainedwhich will suffice for-the present purposes.

for

--- .—
. , +

—.—
.

=s~

.

.-.

—

..

—
.—

For a bcdy with a conceve corner, a
the lm.ding. Just downstream of the

convex corner

dCN
A=(l- e-q)t~ 5 ———

U*

and, there~ter,

special form must
corner and before

()

~LW- F e-~&
Pu

also be used
t14efimti. . ._ .=

g

(B22)

where ,-.

(

[W2sin2(a - %) -112

‘“- ‘(pd;p~) 1(7 - l)Mu%l12(u - ~) + 2]~%112(cY - “%)
1

—

.,. .—

.,. .- . .
,.,*

(B23)

(B24)
.

●

✎✎
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The corresponding equations for open-nosed bodies of revolution are
similar. The pressure gradient at the leading edge may be determined
from equation (B21) with ~ = ~, ~ = O, and (h/as)u = O. The loading —
on the exterior surface is

A= (l- e-~)t~ 5

given by

where ~ is the loading at the leading edge,

h sin UVCOS av

or

~.

[
(y + 1) 1- ‘in(”vs;n;::::(:- ‘) +(--) Cos’(m- q

M&sin%rv

(B26)

and J is defined by

(~’sin’crv - 1)2
J=

(Pv/Po)~oss~%[ (Y - 1)%2’in2% + 21

.(B2i)

-.

For bodies with concave corners, and for open-nosed bodies, the total
pressure is not constant on the surface when the bodies are inclined.
This variation in surface total pressure leads to the term involving &
in equation (B23) and the term involving AV in equation (B25).
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EXTENSIONS OF TEE APPROXIMATE METHOD

‘Ikd,sanalysis is based on the approximate or %wo-stey method pre-
viously mentioned. The basic equations of this method are equations (n),
(12), (1,3),end (20). Before proceeding tith this analys”isjit-is con-”
venient to-write down the expressions for the function B (see eq. (12))
for–several.types of bodies. ‘!Theseexpressions are presented In the
following table:

Repressions for ~
.+

.-

Body For nose section For cylindrical afterbody

Any body
x sin &-v- r cos *

2fnSin
XI

r cos b <) ~- Cos 5V
- x sin 5

()
an&l

Cone-cylinder (Not required)

41 + kfn=

Tangent-ogive- ,+4f:@&-1)

cylinder
1 + 4fn2

b

(

2
Tsngent-paraboloid +1-= z~

,.(2 ~ - .)

cylinder

2+1 J=

.

,

In ‘general,the equations for the normal-f’orceand pitching-moment
derivatives maybe integrated in
tion and one for the afterbody.
equation (20)

—
.-two parts - one pert for the nose fjec-

Thus, with the loading defined by
——

-----

(cl)dCN
~==

nose
+ Gle ( )-%fn ~ - e-G&a

—

. .

G2fn + C&fa)e-%fa“- 1’;;2)
-——.—

+ G2fn) - (1 + .
J

.-
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smd

(C3) -

G2 = 2$asin ~ (C4)

The additional subscript, a, refers to functions evaluated for the after-
body (i.e., b = O). Thus, from equation (13),

Y(PSa/PO)MSa2
$a =

Qv

2(1 - a= (C5)
pSa@0)(Ua2 - 1)

The terms G1 and & are functions of ~ snd ~ alone. These
functions have been evaluated and the results sre shown in figure 8.- For
the special case of cone-cylinders, equations (Cl) and (C2) represent a
closed solution of the general method as well.

—.

By the use of an additional approximation to A, results in closed
form csn also be obtained for ogival nose sections. Such an approximation
is

r
[(1-

<)

dCN
~1 -G4]@ub)2 _

‘s) da tcv
A = ~tan

= tcv
+ G4tan b +

tsll5’V
(c6)

where

and

Ga=2(l-e ‘*a) (c8)

. When equation (c6) is substituted in equations (14) smd (21), equations
are obtained in closed form for dCN/da.and d~da. T&ese equations
involve constants which are complicated functions of the nose ~gle ~

. (or nose fineness ratio fn). These functions cm be expsmded in a series

.
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in terms of ~; the leading terms of these series me c-~sti”ts”independ- ‘
.—

ent of ~. In view,of the approximate.nature of tQis a.@_ysi.s,the use of .
the leading terms will suffice. Thus there “isobtained

-. .>

dCN
=+G4+~

()
(1 +-4!3.)~

h ogive tcv “
(C9)

.

-.

~ dCm (3 + 2=s) d%
$G4-

()

—
——
fn &

=-
ogive

15. —
h tcv

.,

(cm)

TO the accuracy of this analysis, these “equationsalso represent the SOW- “

tions for a tsmgent paraboloid. These equatiorishve been evaluat~ for
-r..r

a range of Mach numbers snd nose fineness ratios. The results are pre-
sented in figure 9. It is apparent that with the.a~d Of.gqtitions (Cl),

.

(C2), (C9), (C1O), and figures’8and.9, dCN/daandd~du for ogive-
cylinders can be evaluated approximately in a few minutes”.

...

...—..—
..

—.

—
..

—

.-
*

..- ._. : ,. ,~.- .......

—

.
.. . ,>

.—

... .—-- . .— .- —— .—.—.—
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